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Stabilizing the discrete vortex of topological charge S=2
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We study the instability of the discrete vortex with topological charge S=2 in a prototypical lattice model
and observe its mediation through the central lattice site. Motivated by this finding, we analyze the model with
the central site being inert. We identify analytically and observe numerically the existence of a range of linearly
stable discrete vortices with S=2 in the latter model. The range of stability is comparable to that of the recently
observed experimentally S=1 discrete vortex, suggesting the potential for observation of such higher charge

discrete vortices.
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I. INTRODUCTION

In the past decade, lattice systems described by
differential-difference equations in which the evolution vari-
able is continuum and the spatial variables are discrete have
been a subject of increasing interest [1]. These systems ap-
pear in many diverse physical contexts, describing, e.g., the
spatial dynamics of optical beams in coupled waveguide ar-
rays in nonlinear optics [2], the temporal evolution of Bose-
Einstein condensates (BECs) in optical lattices in soft-
condensed matter physics [3], the DNA double strand in
biophysics [4], and so on.

One of the principal directions of interest in these lattice
systems consists of the effort to understand the features of
their localized, solitary wave solutions. In two dimensions,
such structures can be discrete solitons [5] or discrete vorti-
ces (i.e., structures that have topological charge over a dis-
crete contour) [6]. In the past two years, there has been a
considerable effort towards the observation of both entities in
the context of optics, utilizing photorefractive crystals: regu-
lar discrete solitons, dipole solitons, soliton trains, soliton
necklaces, and vector solitons were observed [7], while two
groups were independently able to experimentally produce
robust discrete vortex states [8]. On the other hand, experi-
mental developments in the physics of BECs closely follow
with prominent recent results, including the observation of
bright, dark, and gap solitons in quasi-one-dimensional set-
tings [9], and with the generation of similar structures in
higher dimensions appearing within experimental reach [10].

The above discussed experimental realization of discrete
vortices of topological charge S=1 [8] (i.e., with a 27 phase
shift around a discrete contour) poses the question of
whether higher topological charge discrete vortices could
also potentially be experimentally realizable. The most natu-
ral higher topological charge state to consider is then the
vortex with S=2. However, lattice computations with a pro-
totypical discrete model, namely the the discrete nonlinear
Schrédinger (DNLS) equation, had identified that mode to be
always unstable [6]. In this work we will revisit this topic
and examine in some detail the instability of the S=2 dis-
crete vortex in the framework of the DNLS equation [11]
which, in different variants, is relevant to all of the above
mentioned, experimentally tractable settings. Our scope is to

1539-3755/2005/72(1)/016606(6)/$23.00

016606-1

PACS number(s): 05.45.Yv, 02.30.Hq, 02.30.0z, 03.75.Lm

offer some insight on the nature of the instability, which will,
in turn, allow us to suggest an explicit mechanism for its
stabilization by means of the inclusion of an impurity at its
center. We analyze the latter case in detail and establish (ana-
lytically and numerically) the stability of the S=2 vortex in
that setting for parametric regimes similar to the ones for
which the discrete vortex of S=1 has been found to be stable.
We should note in passing that experiments with vortices in
BECs have not been performed, to the best of our knowl-
edge, in the presence of periodic optical lattice potentials
despite the theoretical suggestion of interesting phenomena
in the latter context [12]. However, vortices of higher topo-
logical charge [13] have been constructed (including giant
vortices [14]) and a considerable amount of interest has re-
volved around their stabilization in theoretical work [15] as
well as in earlier experimental work in superfluid He [16].
Since higher dimensional optical lattices are readily experi-
mentally accessible (see, e.g., Refs. [3,10]), the phenomenol-
ogy presented herein might be directly relevant to experi-
mentally accessible settings involving matter waves. Notice
also that an additional complication appears to be that most
of the above experiments were conducted in repulsive con-
densates (with defocusing nonlinearities), while the present
analysis will be relevant for focusing nonlinearities. How-
ever, as is discussed in detail in Refs. [17,18], it is at present
very straightforward to modify the magnitude and sign of the
scattering length of interatomic interactions (and hence of
the nonlinearity coefficient) over a wide range. Therefore the
attractive nature of the interactions for the vortices consid-
ered herein does not pose an obstacle to the experimental
realization of the relevant setting.

Our presentation is structured as follows: in Sec. II, we
give the theoretical analysis of the existence and stability of
the S=2 vortex; in Sec. III, we complement the analysis with
numerical results. Finally, in Sec. IV, we summarize our
findings and present our conclusions.

II. ANALYTICAL RESULTS

We consider the DNLS equation

.. _ 2
Wy == 6A2un,m - |un,m| u

nm> (1)
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where u is the complex field (the envelope of the electric
field in optics or the wave function in BECs), € is the cou-
pling constant (the “tunneling rate” between adjacent sites),
while  Aju,, =101+ Upoy g Uit Uy ey =41y, 1S the
discrete Laplacian. We seek standing wave, localized solu-
tions in the standard form u,, ,,= (;Sn’me"(”“‘e)’. Our approach is
based on the Lyapunov-Schmidt theory for the existence of
solutions [19] and on linear stability analysis for tracing the
stability eigenvalues of the corresponding solutions, simi-
larly to what was done for discrete solitons and vortices in
Ref. [20]. Let us mention in passing that for quasilinear so-
lutions in the presence of an external potential with appro-
priate spectrum, one can also use techniques similar to those
of Ref. [21] to analyze the stability of higher charge vortices.
However, given that we are interested in solutions even in
the strongly nonlinear regime here, we do not use the latter
approach.

Our starting point is the so-called anticontinuum limit of
e=0 [22], where the nonlinear oscillators of our two-
dimensional lattice are uncoupled. We excite a discrete vor-
tex in that limit by choosing a contour containing eight
sites  [(-1,-1),(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),
(0,-1)], where the corresponding solution e’%.m on these
sites, while it is 0 elsewhere (selecting without loss of gen-
erality u=1). The motivation for the choice of the phases
over this discrete contour is that we aim to construct a solu-
tion with S=2 over the relevant contour, hence the real part
of the configuration should behave as cos(26), and the imagi-
nary part as sin(26), which in turn immediately implies that
we should choose 6, ,=jm/2, where j=1,...,8 is an index
over contour sites. Below, we briefly discuss the general
theory that would apply to any solution over the relevant
contour, and then focus on the discrete vortex with S=2. The
stationary state equation for ¢, ,, is given by

f( d)n,m’ (_ﬁn,m’ E) = (1 - |¢n,m|2) ¢n,m - E(AZ + 4) ¢n,m’ (2)

and its complex conjugate f(¢,, > Pym»€)=0. The lineariza-
tion operator for these two difference equations reads

1- 2|¢n,m|2 - 5m
7—[nm = - ’
' - ¢ I 2|¢n,m|2

n,m

10
—6(S+1,0+S-1,0+So,+1+So,-1)(0 1>, (3)

with s,/ Uy 1y =Upinr memr- Then, the solvability condition of
the Lyapunov-Schmidt theory (allowing to continue a solu-
tion valid for €e=0 to €# 0) mandates that the projection of
the eigenvectors of H,, 0 to Eq. (2) and its conjugate is null.
To O(e), this condition provides the bifurcation function con-
straint  g;=sin(6;—6,,,)+sin(6,—6,_,)=0, (for j=1,....8
with periodic boundary conditions) that was algebraically
obtained in Ref. [23]. This is naturally satisfied for the S
=2 vortex with 6,—6,_;=m/2 discussed above. However,
computing the Jacobian matrix (M,); ;= o"gjl-/ 36, of the bi-
furcation function gl, one can observe that its eigenvalues
are 0 for the case of our S=2 solution and hence second-
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order reductions are necessary to adjudicate on the existence
and stability of the S=2 vortex.

Expanding ¢,,,=®) ,+ €, ,,+O0(€), one can obtain the
corresponding equations for the O(e) correction to the solu-
tion profile qsﬁ,’,m as

The solution of Eq. (4) can be found as

1 )
by =- E[COS(Qj_l = 0;) +cos(0;,; - aj)]elej, (5)

nm =

over the discrete contour while ¢ =e®2+e/%+ei%+e%,

Using ¢' to obtain the next order correction of the bifurca-
tion function, we get

L.
gf = ESIH(ejH - aj)[cos(ej = 01) + COS(0j+2 - 3/+1)]

1
+ Esm(ai—l - ﬁj)[cos(ﬂj = 0;_1) +cos(0;_, - 0}‘—1)]

+ (sin(6; -

><(5j’2+ Oja+

0,42) + sin(6; — 6,,.4)+ sin(6; - 6,_,))
36t 9js),

with 1=<j=<8 and § denoting the Kronecker symbol. Once
again the bifurcation condition is satisfied for our vortex of
S=2. However, the eigenvalues of the corresponding second-
order Jacobian M, are not identically zero and can be used
to establish (in conjunction with the bifurcation condition
being identically satisfied) the persistence of the vortex of
topological charge S=2 in the vicinity of €=0.

Furthermore, the Jacobian M, of the second order reduc-
tions can be computed explicitly as

1 1
1 0O --— 0 0 0O --— 0
2 2
1 1
0 0 o - o0 -1 0 =
2 2
1 1
-— 0 1 0O -- 0 0 0
2 2
1 1
0 - 0 0 0 - 0 -1
2 2
M, = 1 1 -(6)
0 0O —-— 0 1 0O —-— 0
2 2
1 1
o -1 0 —- O 0 0o -
2 2
1 1
-— 0 0 0O -- 0 1 0
2 2
1 1
o —-— o0 -1 0 =—- O 0
2 2

By using the expansion
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FIG. 1. (Color online) The discrete vortex is shown for e=0.2. The left panel shows contour plots of the real (top) and imaginary (bottom)
parts. The middle panel shows a three-dimensional (3D) rendering of the real part, while the right panel shows a similar 3D plot of the

imaginary part of the vortex.

un,m(t) = ei(l_46)l+i00(¢n,m + an,meM + Bn,me)\l) ) (7)

one can study the stability of the discrete vortex of S=2.
Furthermore, by expanding the eigenfunction in Taylor series
in € (as we did above for the solution ¢) and corresponding-
lythe eigenvalue N as N=e\;+O(€), it can be shown (see
Ref. [20] for details) that the Jacobian M, can be directly
connected with the eigenvalue correction \; (for eigenvalues
bifurcating from 0, which are the natural sources of potential
instability in the DNLS problem). The relevant equation con-
necting M, and \; is the (reduced, i.e., 8 X8) eigenvalue
problem of the form

)\2
Moe=N\ Lo+ Elc, (8)

where (£,);,=1if j=k—1,-1 if j=k+1, and 0 if |j—k|# 1.
Using the discrete Fourier transform, one can obtain from
Eq. (8) the characteristic polynomial:

N 2)&(1 —(=1)-8 sin2%> +8 sin2<?)

X(l —(=1Y=2 sinz%) =0, j=1,23.4, (9)
which provides the leading order approximations to the ei-
genvalues of the S=2 vortex as follows: in the neighborhood
of A=0, the vortex will have three eigenvalues of algebraic
multiplicity 4: A=0 and A==*2ei, while it will have two
. . . . Tor o

simple imaginary elgenvalues A=+\80+8¢€i and two real
eigenvalues \=+1y80—-8€. Among the latter, the positive
one is the reason for the §=2 vortex being always (i.e., for
any €# 0) unstable, as was numerically observed [6].

The examination of the real eigenmode leading to the di-
rect instability of the S=2 vortex [that has support over the
central, i.e., (0,0), site], as well as the apparent mediation (in
numerical experiments—see below) of the instability by
means of the central site, lead us to consider the possibility
of having an “impurity” at the central site, e.g., a strong
localized potential such as a laser beam in BECs or an inho-
mogeneity in the photorefractive crystal, enforcing ¢ (=0.
In such a case, the bifurcation function g]g lacks the last term
(encompassing the Kronecker symbols), since these are in-

teractions “mediated” by the now inert (0,0) site. Further-
more, the second order Jacobian is now much simpler and
acquires the form (M,); =1 for j=k,~1/2 for j=k=2, and
0 for |j—k| #0,2. One can then repeat the calculation of the
eigenvalues in the problem of Eq. (8), via the discrete Fou-
rier transform, to obtain the characteristic equation

. 2
()\1+2i sin(ff)) =0, j=1,...8. (10)

This results in three eigenvalues of algebraic multiplicity 4,
namely A=0 and \ = + ei\2. There are also two double eigen-
values, A==2i. The crucial observation, however, is that in
this case, there are no real eigenvalues immediately present
as €# 0 and hence the discrete vortex with S=2 will be lin-
early stable, due to the stabilizing effect of the impurity (or,
to be more precise, due to the absence of the instability me-
diated by the (0,0) site). We now turn to numerical investi-
gations to examine the validity of these findings.

III. NUMERICAL RESULTS

We identify unit frequency solutions with topological
charge S=2, by initializing the exact solution configuration
at the €=0 limit of Eq. (1) and then using continuation over
€, combined with a contraction mapping for the solution of
the nonlinear system of (algebraic) equations to identify the
exact (up to a prescribed numerical accuracy) numerical dis-
crete vortex. We then perform linear stability analysis, using
the expansion of Eq. (7), to obtain the eigenvalues X\, and
their corresponding eigenvectors.

Figure 1 shows a typical example of the discrete vortex
for €=0.2 in the regular DNLS model. The middle and right
panels show the real and imaginary part of the solution,
clearly emulating cos(26) and sin(26) over the lattice con-
tour of interest. The linear stability analysis of this vortex
is shown in Fig. 2. One can observe that both for the imagi-
nary (top left panel), as well as for the real (bottom left
panel) eigenvalues, the predictions of the perturbation theory
(dashed line) are extremely accurate in comparison with
the full numerical results even for € up to 0.25. Clearly as
€ increases, higher order phenomena become relevant, such
as the splitting of the quartet of eigenvalues at A==+\2€i,
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FIG. 2. (Color online) Linear stability analysis of the S=2 vortex. The left panel shows the imaginary (top) and the real (bottom) part of
the point spectrum eigenvalues bifurcating from A=0. The solid line shows the numerical result, while the dashed line indicates the
theoretical prediction (see text). The most unstable eigenmode pertaining to the real eigenvalue for €=0.2 is shown (real part: top; imaginary

part: bottom) in the right panel.

or the collision of the simple pair of eigenvalues with
A==80+8ei with the bottom edge of the continuous spec-
trum (which is at A==i), resulting in a Hamiltonian Hopf
bifurcation and a complex quartet of eigenvalues for
€>0.23. Additional such quartets appear for larger values of
€. However, the solution is always unstable due the real ei-
genvalue pair A=+ /80—8¢, whose eigenfunction is shown
in the right panel of the figure. Notice that the latter has
support over the central site, predisposing us for the role of
this site in the instability development.

The corresponding predictions/numerical results for the
model with the impurity [i.e., with (0,0) inert] are shown in
Fig. 3. The top panel illustrates the eigenvalue of multiplicity
four with A=+ €i2 and with multiplicity two A= =2, which
are again in excellent agreement with the numerical findings.
The real part clearly indicates the absence of an instability
for small e. Such an instability arises due to collision of the
eigenvalue pair with the continuous spectrum and is present
for €>0.36. It is crucial to note here that the S=1 vortex was
found to be stable for €<0.38 in Ref. [20]. This illustrates
that the present mechanism stabilizes the S=2 vortex for a

0 0.05

o 02 04 06 0.8 1

€

parametric region comparable to that of the S=1 vortex, hint-
ing that it could be experimentally feasible to trace such a
configuration similarly to what was done for the S=1 case
[8]. The right panel shows the real and imaginary part of an
unstable eigenmode for e=0.4.

Finally, to examine the dynamical development of the in-
stability and to compare and contrast the dynamical features
of the two models (in the absence and presence, respectively,
of the impurity), we have conducted direct numerical experi-
ments. The main results are shown in Fig. 4 for two repre-
sentative cases (namely €=0.2, where the former case is un-
stable, while the latter is stable, and €=0.4, where both
models have unstable §=2 vortices). In both cases, we have
simulated both models up to r=200, initializing them with
identical initial conditions consisting of the vortex with a
perturbation (multiplied by 107#) in the eigendirection of the
right panel of Fig. 2 for €=0.2 and of Fig. 3 for e=0.4. In the
case of €=0.2, we observe that the DNLS vortex becomes
unstable, whereas in the presence of the impurity the solution
is completely stable (exhibiting oscillations at the order of
the initial perturbation). The instability for the DNLS vortex
appears to be mediated by the central site (dash-dotted) line,
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FIG. 3. (Color online) Same as in Fig. 2, but for the model with the impurity [i.e., with (0,0) inert]. The instability is absent in this case.
The right panel shows the principal eigenmode of instability for e=0.4.
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FIG. 4. For identical initial conditions (see text), e=0.2 (left) and €=0.4 (right), the solution is shown in the relevant central sites as a
function of time, in the absence (top) and presence (bottom) of the impurity. The central site (dash-dotted line) and the sites (—1,0) (solid
line) and (1, 0) (dashed line) are shown (the latter two are the only ones that remain excited in the configuration for long times).

which eventually settles at a rather small amplitude. The final
configuration finds six of the eight (initially) participating
sites at the vortex with near-zero amplitudes, while only two
sites (shown by solid and dashed line) remain excited in an
asymmetric configuration with a long-lived breathing (weak)
exchange of power between them, mediated principally by
the central site. The instability sets in for =45 in this case.
For €=0.4, the regular DNLS becomes unstable even faster
(r=30) and the dynamics is similar. For the case with the
impurity the instability sets in at much longer times (¢
~80), as expected by the much smaller value of the corre-
sponding principal eigenvalue real part. Furthermore, while
only two sites remain excited in this case as well, the con-
figuration is no longer asymmetric and the oscillation of
power can be identified (data not shown) as being caused by
the small amplitude exchange of power around the vortex
contour (recall that the central site is in this case inert).

IV. CONCLUSIONS

In this work we have revisited the topic of discrete vorti-
ces of topological charge S=2. We have explicitly discussed

and illustrated their instability in the prototypical lattice
model of the discrete nonlinear Schrodinger equation and
have traced its source in the exchange of power made avail-
able through the central site of the vortex. We have thus
proposed to consider a model with an impurity (an inert) site
at the center of the vortex. Examination of the stability prob-
lem in the latter case shows the absence of linear instability
for a regime of coupling strengths comparable to that of the
linear stability interval of the experimentally observable
S=1 state. Numerical findings conclusively corroborate this
picture both at the level of linear stability analysis (found to
be in excellent agreement with the theoretical predictions)
and at the one of direct numerical experiments. We believe
that this opens the path for observation of higher charge dis-
crete vortices and renders experimental work in this direction
particularly timely.
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